
Measure Killer Security Information and Documentation

Version 2.9.1

This document outlines the security details and data handling practices of Measure Killer.

Summary of requirements

This section provides a summary of all outbound connections made by Measure Killer. It is

intended for IT and security professionals. Connections marked as [Optional] can be ignored

if they are blocked or fail. For more information on each connection, please check the other

sections in the document.

• Domain: api.powerbi.com

o Goal: All Power BI related API calls (All listed below)

o Port: 443

o Protocol: HTTPS

• Domain: api.fabric.microsoft.com

o Goal: All Fabric related API calls (All listed below)

o Port: 443

o Protocol: HTTPS

• Domain: *.servicebus.windows.net

o Goal: License verification

o Ports: 443 (required), 5671 (optional)

o Protocol: TLS-encrypted AMQP over WebSockets or AMQP over TLS

• Domain: www.measurekiller.com (hosted on world4you.com)

o Goal: License verification – Blacklisted licenses

o Port: 443

o Protocol: HTTPS

• Domain: raw.githubusercontent.com

o Goal: Fallback for license verification – Blacklisted licenses

o Port: 443

o Protocol: HTTPS

• Domain: time.windows.com

o Goal: License verification – Current date and time

o Port: UDP 123

o Protocol: NTP

• Domain: pool.ntp.org

o Goal: 1st fallback for license verification – Current date and time

o Port: UDP 123

o Protocol: NTP

• Domain: timeapi.io

o Goal: 2nd fallback for license verification – Current date and time

o Port: 443

o Protocol: HTTPS

• [Optional] Domain: ifconfig.me

o Goal: License verification - Public IP address

o Port: 443

o Protocol: HTTPS

• [Optional] Domain: www.measurekiller.com

(https://measurekiller.com/downloads) (hosted on world4you.com)

o Goal: Checking if there are new versions available

o Port: 443

o Protocol: HTTPS

• [Optional] Domain: brunner.bi (hosted on world4you.com)

o Goal: Start up message

o Port: 443

o Protocol: HTTPS

Data Handling and Privacy Assurance

Measure Killer is meticulously designed with user privacy and data security as paramount

concerns. It is important for users to understand the scope and way that Measure Killer

interacts with Power BI.

Metadata-Only Interaction

Measure Killer only interacts and utilizes metadata from Power BI Desktop or the Power BI

Service. At no point does Measure Killer read, store, or process actual data contained

within Power BI reports or models. This strict limitation to metadata ensures that sensitive

data remains confidential and secure.

Beyond Power BI related data, Measure Killer needs to collect the following metadata for

license verification (see also the 'License metadata' section): Installed Measure Killer

version, user and machine name, license key and public IP (optional).

What is considered Metadata?

Metadata is considered the following (examples):

• Names or artifacts (report, semantic models, workspaces, users/email addresses)

• DAX and M expressions including comments

• Names of measures, tables, calculated columns, calculated tables, calculation groups,

field parameters, etc.

• Uncompressed size of columns

• All definitions (e.g. name of reports, pages, visuals, visual titles, visual size and other

metadata)

Local Processing of Metadata

All processing and analysis of metadata conducted by Measure Killer is performed locally on

the user's machine through the installed client software. This approach ensures that the

operations on metadata do not involve or require any external processing or storage facilities.

By doing so, Measure Killer upholds a high standard of data protection and minimizes

potential security risks. There is no database that is hosted, managed, or used to process

any kind of information, everything is done on the user’s machine and not transmitted

anywhere besides when using XMLA or REST API calls with Microsoft directly.

XMLA Endpoint Connection

To retrieve metadata from semantic models in the Power BI Service, XMLA endpoints are

used. The authentication happens via the entered Microsoft account (see ADOMD client for

more specifics on this).

Online / Offline Modes

Measure Killer is designed to be able to operate both online and offline:

In the offline modes, Measure Killer connects to the local instance of Analysis Services to

retrieve the metadata it needs (The first 2 modes, "Single model and report" and "Shared

model on local machine"). In these modes the only time there is an interaction with the

internet is upon launch to verify valid licensing (see License Verification below for details)

Online modes (Modes 3, 4 and 5) are triggered when an active internet connection is detected

and when the user has a valid license. In these modes there are external connections

happening (REST API calls and XMLA connections to Microsoft as outlined above).

API Endpoints and Security Measures

• Secure requests (HTTPS) are made to Power BI API endpoints, ensuring data in

transit is encrypted.

• Access tokens are securely passed in request headers, with responses parsed as JSON

for internal processing.

• Measure Killer also makes use of NTP (Network Time Protocol) servers such as

time.windows.com and pool.ntp.org to obtain the current UTC time for license

validation. If NTP access (UDP port 123) is restricted, Measure Killer automatically

falls back to a secure HTTPS-based time source (https://timeapi.io) to ensure time

synchronization is still available.

• Additional information, such as announcement messages and latest version releases

are also collected from our domain www.measurekiller.com over HTTPS

License Verification

Date and time

First Measure Killer needs to get the current date and time from a trusted source, for that it

uses NTP via the ntplib library in python (version 0.4.0). We consult the time.windows.com

server and as a fallback pool.ntp.org, case both fails, timeapi.io API will be used

• Primary: time.windows.com via NTP (UDP port 123)

• Fallback: pool.ntp.org via NTP (UDP port 123)

• Secondary fallback: timeapi.io via HTTPS (port 443)

Public IP lookup (optional)

Measure Killer collects the public IP address with the following:

• ifconfig.me over HTTPS (port 443)

If this service is blocked, Measure Killer will proceed but report the IP as "unknown".

https://timeapi.io/
https://www.measurekiller.com/

License metadata

For the purpose of validating active licenses and ensuring compliance, Measure Killer

transmits a minimal set of license-related metadata to a secure EventStream endpoint. The

transmitted payload includes the local machine username, license key, installed Measure

Killer version, public IP address. No Power BI metadata, report content, or user data is ever

included in this process. All data is sent exclusively over encrypted channels (HTTPS/TLS)

and is handled in accordance with strict security and privacy practices.For this, the Azure

Event Hubs libraries for python will be used (azure-eventhub version 5.15.0). To make this

work, we need outbound connectivity to the following:

• Domain: *.servicebus.windows.net

• Ports: 5671 (AMQP over TLS), 443 (AMQP over WebSockets) and as a fallback if

5671 cannot be opened.

• Protocol: TLS-encrypted AMQP traffic (not plain HTTP).

Additionally, the tool also requires verifying cryptographically signed blacklist data:

• Primary source: www.measurekiller.com over HTTPS (port 443)

• Fallback source: raw.githubusercontent.com over HTTPS (port 443)

Version Check and User Notification

To inform users about available updates, Measure Killer queries

https://measurekiller.com/downloads and https://en.brunner.bi/post/measure-killer-

feedback-1 to compare the installed version against the most recent version available the

website and to provide additional information for our users:

• https://measurekiller.com/downloads over HTTPS (port 443)

• https://en.brunner.bi/post/measure-killer-feedback-1 over HTTPS (port 443)

List of REST API Calls

REST API calls are made to Microsoft’s Power BI Service for the acquisition of metadata.

These API calls are made in compliance with all relevant security protocols. Authentication

happens via browser interaction (OAUTH2). Once metadata has been acquired, all

subsequent analyses and operations are carried out locally. See the list at the bottom of this

document for a list of REST API calls done.

• Datasets - Get Datasets In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/datasets

• Datasets - Get Refresh History In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/datasets/{dataset.id}/refre

shes

• Datasets - Get Refresh History: GET

https://api.powerbi.com/v1.0/myorg/datasets/{dataset.id}/refreshes

• Datasets - Execute Queries In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/datasets/{dataset.id}/exec

uteQueries

https://www.measurekiller.com/
https://measurekiller.com/downloads
https://en.brunner.bi/post/measure-killer-feedback-1
https://en.brunner.bi/post/measure-killer-feedback-1
https://measurekiller.com/downloads
https://en.brunner.bi/post/measure-killer-feedback-1
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/refreshes
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/refreshes
https://api.powerbi.com/v1.0/myorg/datasets/%7bdataset.id%7d/refreshes
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/executeQueries
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/executeQueries

• Reports - Get Reports In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/reports

• Reports - Get Datasources In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/reports/{report.id}/dataso

urces

• Reports - Get Datasources: GET

https://api.powerbi.com/v1.0/myorg/reports/{report.id}/datasources

• Reports - Export Report In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/reports/{report.id}/Expor

t

• Reports - Export Report: GET

"https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/export">https://api.po

werbi.com/v1.0/myorg/reports/{report.id}/Export

• Groups - Get Groups: GET

https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/users

• Groups - Get Groups: GET https://api.powerbi.com/v1.0/myorg/groups

• Admin - Get Capacities As Admin: GET

https://api.powerbi.com/v1.0/myorg/admin/capacities

• Admin - WorkspaceInfo GetScanStatus: GET

https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanstatus/{scan.id}

• Admin - WorkspaceInfo GetScanResult: GET

https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanresult/{scan.id}

• Admin - WorkspaceInfo PostWorkspaceInfo: POST

https://api.powerbi.com/v1.0/myorg/admin/workspaces/getinfo?lineage=true

• Admin - Get Activity Events: POST

https://api.powerbi.com/v1.0/myorg/admin/activityevents

• Admin - Groups GetGroupsAsAdmin: GET

https://api.powerbi.com/v1.0/myorg/admin/groups

• Admin - Groups AddUserAsAdmin: POST

https://api.powerbi.com/v1.0/myorg/admin/groups/{workspace.id}/users

• Admin - Groups DeleteUserAsAdmin: DELETE

https://api.powerbi.com/v1.0/myorg/admin/groups/{workspace.id}/users/{user.email}

• Admin - Users GetUserArtifactAccessAsAdmin: GET

https://api.powerbi.com/v1.0/myorg/admin/users/{user.email}/artifactAccess

• Admin - Reports GetReportSubscriptionsAsAdmin: GET

https://api.powerbi.com/v1.0/myorg/admin/reports/{reportId}/subscriptions

• Items - Get Item Definition: POST

https://api.fabric.microsoft.com/v1/workspaces/{workspace.id}/items/{item.id}/getDe

finition

• Long Running Operations - Get Operation State: GET

https://api.fabric.microsoft.com/v1/operations/{operation.id}

• Long Running Operations - Get Operation Result: GET

https://api.fabric.microsoft.com/v1/operations/{operation.id}/result

• Domains - List Domain Workspaces GET

https://api.fabric.microsoft.com/v1/admin/domains/{domainId}/workspaces

https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/datasources
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/datasources
https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/datasources
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/export%22%3ehttps:/api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/export%22%3ehttps:/api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/users
https://api.powerbi.com/v1.0/myorg/groups
https://api.powerbi.com/v1.0/myorg/admin/capacities
https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanstatus/%7bscan.id
https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanresult/%7bscan.id
https://api.powerbi.com/v1.0/myorg/admin/workspaces/getinfo?lineage=true
https://api.powerbi.com/v1.0/myorg/admin/activityevents
https://api.powerbi.com/v1.0/myorg/admin/groups
https://api.powerbi.com/v1.0/myorg/admin/groups/%7bworkspace.id%7d/users
https://api.powerbi.com/v1.0/myorg/admin/groups/%7bworkspace.id%7d/users/%7buser.email
https://api.powerbi.com/v1.0/myorg/admin/users/%7buser.email%7d/artifactAccess
https://api.powerbi.com/v1.0/myorg/admin/reports/%7breportId%7d/subscriptions
https://api.fabric.microsoft.com/v1/workspaces/%7bworkspace.id%7d/items/%7bitem.id%7d/getDefinition
https://api.fabric.microsoft.com/v1/workspaces/%7bworkspace.id%7d/items/%7bitem.id%7d/getDefinition
https://api.fabric.microsoft.com/v1/operations/%7boperation.id
https://api.fabric.microsoft.com/v1/operations/%7boperation.id%7d/result
https://api.fabric.microsoft.com/v1/admin/domains/%7bdomainId%7d/workspaces

• Domains - List Domains GET https://api.fabric.microsoft.com/v1/admin/domains

Additional Security and Testing Approach

We use a combination of automated scanning and testing along with manual reviews to

ensure Measure Killer’s security before and after each release. Below are our main practices:

• Software composition analysis: When we begin development on a new version, we

check all open-source dependencies for known vulnerabilities using pip-audit and

OSS Index. Because many issues can be resolved by library updates, we track each

new release. We then review any security fixes and confirm compatibility with

Measure Killer. If it is stable and relevant, we incorporate it into our codebase.

• Static code analysis: We run automated static analysis with tools such as Bandit (a

Python security analyzer) and PyLint (for code quality and style). These tools flag

potential security weaknesses. Our developers then review each flagged item to

determine if it represents a real vulnerability or a false positive.

• Automated Testing and Code Review: We use pytest for extensive unit and

integration testing. Security-wise, our tests focus on:

o Validation and Parsing Logic: Ensuring .pbix and .rdl files are parsed securely.

o User Authentication: Verifying usage of the azure.identity library and tabular

connections.

o Error-Handling and Fail-Safe Behavior: Simulating network or parsing

failures using mocks, and testing responses to Power BI API errors.

o Regression Testing: Checking that known issues from previous Measure Killer

versions remain fixed.

Rapid response to new vulnerabilities

If a vulnerability is discovered, our team follows a quick release process to track the issue,

apply a prompt fix, and release an updated version of Measure Killer. We typically release

bug-fix or patch versions on a monthly basis.

These measures, combined with our architecture that avoids storing or processing actual data,

are designed to protect sensitive information and maintain a high level of security for all

Measure Killer users.

Known CVEs

V8

Regarding the sandbox escape vulnerabilities associated with V8: In Measure Killer, V8 is

bundled with the Qt WebEngine library, but our application does not load any external web

content or scripts. It only renders internal HTML charts (for example, in the “Plot results”

tab). Because no untrusted content is ever processed, these vulnerabilities cannot be

exploited in Measure Killer.

LLVM

This library is pulled in by PyInstaller when converting our Python code into an executable.

Measure Killer does not compile or handle external code, and PyInstaller is only used during

https://api.fabric.microsoft.com/v1/admin/domains

development to build the .exe (never at runtime). Thus, there is no way for an LLVM-Based

attack in Measure Killer.

Python (3.11.8)

CVEs in Python:

• CVE-2024-8088 (CWE-835)

• CVE-2024-12254 (CWE-400)

• CVE-2017-20052 (CWE-427)

• CVE-2024-7592 and CVE-2024-6232 (CWE-1333 or CWE-400)

• CVE-2015-5652 (Broad CWE category)

• CVE-2025-0938 (CWE-20)

• CVE-2024-6923 (CWE-94)

• CVE-2024-3219 (CWE-306)

These vulnerabilities arise when an application can run or process arbitrary code or malicious

inputs. Measure Killer does not allow external code execution, nor does it ingest untrusted

data. We only pull metadata from Microsoft’s Power BI Service (over HTTPS) and parse

local files that the user explicitly opens.

libxml2 and Expat

CVEs associated with libxml2 and Expat (such as CVE-2016-4616, CVE-2016-4615, CVE-

2016-4614, CVE-2021-3517, CVE-2024-25062, and more) that typically become relevant if

an application processes malformed or hostile XML from unknown sources. In Measure

Killer, we only parse .rdl files created by Power BI Report Builder, Microsoft Report Builder,

or generated via Power BI’s “Export Report In Group” API. These .rdl files have a defined

structure and come from trusted sources, making the known XML-related exploits not

applicable.

libvpx and libaom

These are part of Qt’s multimedia modules. Measure Killer does not process or render video

files, so potential vulnerabilities in these libraries (usually triggered by malformed video

content) do not pose a risk in our application.

Qt (version 6.7.2)

Qt provides the main user interface framework. While Qt can load external HTML or

JavaScript, Measure Killer does not permit loading unknown URLs or scripts. Similar to V8,

we only use Qt WebEngine for charts generated internally by the tool.

Skia (version 118)

Skia is an image rendering engine used indirectly by Qt WebEngine. We do not load or

display arbitrary images in Measure Killer; only predefined icons and resources stored

locally. With no untrusted image handling, Skia-related exploits are not a concern.

SQLite3 (version 3.42.0)

Measure Killer uses SQLite to store activity logs of the Power BI Tenant, such as report

views, and Excel activities. We do not open or process any external .sqlite files, thereby

avoiding typical exploitation paths for SQLite vulnerabilities.

