Measure Killer Security Information and Documentation

Version 2.9.1

This document outlines the security details and data handling practices of Measure Killer.
Summary of requirements

This section provides a summary of all outbound connections made by Measure Killer. It is
intended for IT and security professionals. Connections marked as [Optional] can be ignored
if they are blocked or fail. For more information on each connection, please check the other
sections in the document.

e Domain: api.powerbi.com
o Goal: All Power Bl related API calls (All listed below)
o Port: 443
o Protocol: HTTPS
e Domain: api.fabric.microsoft.com
o Goal: All Fabric related API calls (All listed below)
o Port: 443
o Protocol: HTTPS
e Domain: *.servicebus.windows.net
o Goal: License verification
o Ports: 443 (required), 5671 (optional)
o Protocol: TLS-encrypted AMQP over WebSockets or AMQP over TLS
¢ Domain: www.measurekiller.com (hosted on world4you.com)
o Goal: License verification — Blacklisted licenses
o Port: 443
o Protocol: HTTPS
e Domain: raw.githubusercontent.com
o Goal: Fallback for license verification — Blacklisted licenses
o Port: 443
o Protocol: HTTPS
e Domain: time.windows.com
o Goal: License verification — Current date and time
o Port: UDP 123
o Protocol: NTP
e Domain: pool.ntp.org
o Goal: 1* fallback for license verification — Current date and time
o Port: UDP 123
o Protocol: NTP
e Domain: timeapi.io
o Goal: 2™ fallback for license verification — Current date and time
o Port: 443
o Protocol: HTTPS
e [Optional] Domain: ifconfig.me
o Goal: License verification - Public IP address



o Port: 443
o Protocol: HTTPS
¢ [Optional] Domain: www.measurekiller.com
(https://measurekiller.com/downloads) (hosted on world4you.com)
o Goal: Checking if there are new versions available
o Port: 443
o Protocol: HTTPS
e [Optional] Domain: brunner.bi (hosted on world4you.com)
o Goal: Start up message
o Port: 443
o Protocol: HTTPS

Data Handling and Privacy Assurance

Measure Killer is meticulously designed with user privacy and data security as paramount
concerns. It is important for users to understand the scope and way that Measure Killer
interacts with Power BIL.

Metadata-Only Interaction

Measure Killer only interacts and utilizes metadata from Power BI Desktop or the Power BI
Service. At no point does Measure Killer read, store, or process actual data contained
within Power BI reports or models. This strict limitation to metadata ensures that sensitive
data remains confidential and secure.

Beyond Power BI related data, Measure Killer needs to collect the following metadata for
license verification (see also the 'License metadata' section): Installed Measure Killer
version, user and machine name, license key and public IP (optional).

What is considered Metadata?
Metadata is considered the following (examples):

e Names or artifacts (report, semantic models, workspaces, users/email addresses)

e DAX and M expressions including comments

e Names of measures, tables, calculated columns, calculated tables, calculation groups,
field parameters, etc.

e Uncompressed size of columns

e All definitions (e.g. name of reports, pages, visuals, visual titles, visual size and other
metadata)

Local Processing of Metadata

All processing and analysis of metadata conducted by Measure Killer is performed locally on
the user's machine through the installed client software. This approach ensures that the
operations on metadata do not involve or require any external processing or storage facilities.
By doing so, Measure Killer upholds a high standard of data protection and minimizes
potential security risks. There is no database that is hosted, managed, or used to process
any kind of information, everything is done on the user’s machine and not transmitted
anywhere besides when using XMLA or REST API calls with Microsoft directly.



XMLA Endpoint Connection

To retrieve metadata from semantic models in the Power BI Service, XMLA endpoints are
used. The authentication happens via the entered Microsoft account (see ADOMD client for
more specifics on this).

Online / Offline Modes
Measure Killer is designed to be able to operate both online and offline:

In the offline modes, Measure Killer connects to the local instance of Analysis Services to
retrieve the metadata it needs (The first 2 modes, "Single model and report" and "Shared
model on local machine"). In these modes the only time there is an interaction with the
internet is upon launch to verify valid licensing (see License Verification below for details)

Online modes (Modes 3, 4 and 5) are triggered when an active internet connection is detected
and when the user has a valid license. In these modes there are external connections
happening (REST API calls and XMLA connections to Microsoft as outlined above).

API Endpoints and Security Measures

e Secure requests (HTTPS) are made to Power BI API endpoints, ensuring data in
transit is encrypted.

e Access tokens are securely passed in request headers, with responses parsed as JSON
for internal processing.

e Measure Killer also makes use of NTP (Network Time Protocol) servers such as
time.windows.com and pool.ntp.org to obtain the current UTC time for license
validation. If NTP access (UDP port 123) is restricted, Measure Killer automatically
falls back to a secure HTTPS-based time source (https://timeapi.io) to ensure time
synchronization is still available.

e Additional information, such as announcement messages and latest version releases
are also collected from our domain www.measurekiller.com over HTTPS

License Verification
Date and time

First Measure Killer needs to get the current date and time from a trusted source, for that it
uses NTP via the ntplib library in python (version 0.4.0). We consult the time.windows.com
server and as a fallback pool.ntp.org, case both fails, timeapi.io API will be used

e Primary: time.windows.com via NTP (UDP port 123)
e Fallback: pool.ntp.org via NTP (UDP port 123)
e Secondary fallback: timeapi.io via HTTPS (port 443)

Public IP lookup (optional)
Measure Killer collects the public IP address with the following:
e ifconfig.me over HTTPS (port 443)

If this service is blocked, Measure Killer will proceed but report the IP as "unknown".


https://timeapi.io/
https://www.measurekiller.com/

License metadata

For the purpose of validating active licenses and ensuring compliance, Measure Killer
transmits a minimal set of license-related metadata to a secure EventStream endpoint. The
transmitted payload includes the local machine username, license key, installed Measure
Killer version, public IP address. No Power BI metadata, report content, or user data is ever
included in this process. All data is sent exclusively over encrypted channels (HTTPS/TLS)
and 1s handled in accordance with strict security and privacy practices.For this, the Azure
Event Hubs libraries for python will be used (azure-eventhub version 5.15.0). To make this
work, we need outbound connectivity to the following:

e Domain: *.servicebus.windows.net

e Ports: 5671 (AMQP over TLS), 443 (AMQP over WebSockets) and as a fallback if
5671 cannot be opened.

e Protocol: TLS-encrypted AMQP traffic (not plain HTTP).

Additionally, the tool also requires verifying cryptographically signed blacklist data:

e Primary source: www.measurekiller.com over HTTPS (port 443)
e Fallback source: raw.githubusercontent.com over HTTPS (port 443)

Version Check and User Notification

To inform users about available updates, Measure Killer queries
https://measurekiller.com/downloads and https://en.brunner.bi/post/measure-killer-
feedback-1 to compare the installed version against the most recent version available the
website and to provide additional information for our users:

e https://measurekiller.com/downloads over HTTPS (port 443)
e https://en.brunner.bi/post/measure-killer-feedback-1 over HTTPS (port 443)

List of REST API Calls

REST API calls are made to Microsoft’s Power BI Service for the acquisition of metadata.
These API calls are made in compliance with all relevant security protocols. Authentication
happens via browser interaction (OAUTH2). Once metadata has been acquired, all
subsequent analyses and operations are carried out locally. See the list at the bottom of this
document for a list of REST API calls done.

e Datasets - Get Datasets In Group: GET
https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/datasets

e Datasets - Get Refresh History In Group: GET
https://api.powerbi.com/v1.0/myorg/groups/{workspace.id }/datasets/ {dataset.id } /refre
shes

e Datasets - Get Refresh History: GET
https://api.powerbi.com/v1.0/myorg/datasets/ { dataset.id } /refreshes

e Datasets - Execute Queries In Group: GET
https://api.powerbi.com/v1.0/myorg/groups/{workspace.id }/datasets/ {dataset.id} /exec

uteQueries



https://www.measurekiller.com/
https://measurekiller.com/downloads
https://en.brunner.bi/post/measure-killer-feedback-1
https://en.brunner.bi/post/measure-killer-feedback-1
https://measurekiller.com/downloads
https://en.brunner.bi/post/measure-killer-feedback-1
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/refreshes
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/refreshes
https://api.powerbi.com/v1.0/myorg/datasets/%7bdataset.id%7d/refreshes
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/executeQueries
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/datasets/%7bdataset.id%7d/executeQueries

Reports - Get Reports In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/ {workspace.id } /reports

Reports - Get Datasources In Group: GET
https://api.powerbi.com/v1.0/myorg/groups/{workspace.id } /reports/{report.id } /dataso
urces

Reports - Get Datasources: GET
https://api.powerbi.com/v1.0/myorg/reports/{report.id } /datasources

Reports - Export Report In Group: GET

https://api.powerbi.com/v1.0/myorg/groups/ {workspace.id } /reports/{report.id } /Expor
t

Reports - Export Report: GET
"https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/export">https://api.po
werbi.com/v1.0/myorg/reports/{report.id } /Export

Groups - Get Groups: GET
https://api.powerbi.com/v1.0/myorg/groups/{workspace.id}/users

Groups - Get Groups: GET https://api.powerbi.com/v1.0/myorg/groups

Admin - Get Capacities As Admin: GET
https://api.powerbi.com/v1.0/myorg/admin/capacities

Admin - Workspacelnfo GetScanStatus: GET
https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanstatus/{scan.id }

Admin - Workspacelnfo GetScanResult: GET
https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanresult/{scan.id }

Admin - Workspacelnfo PostWorkspacelnfo: POST
https://api.powerbi.com/v1.0/myorg/admin/workspaces/getinfo?lincage=true

Admin - Get Activity Events: POST
https://api.powerbi.com/v1.0/myorg/admin/activityevents

Admin - Groups GetGroupsAsAdmin: GET
https://api.powerbi.com/v1.0/myorg/admin/groups

Admin - Groups AddUserAsAdmin: POST
https://api.powerbi.com/v1.0/myorg/admin/groups/{workspace.id } /users

Admin - Groups DeleteUserAsAdmin: DELETE
https://api.powerbi.com/v1.0/myorg/admin/groups/{workspace.id } /users/{user.email }
Admin - Users GetUserArtifactAccessAsAdmin: GET
https://api.powerbi.com/v1.0/myorg/admin/users/{user.email } /artifactAccess

Admin - Reports GetReportSubscriptionsAsAdmin: GET
https://api.powerbi.com/v1.0/myorg/admin/reports/ {reportld}/subscriptions

Items - Get Item Definition: POST
https://api.fabric.microsoft.com/v1/workspaces/{workspace.id}/items/{item.id } /getDe
finition

Long Running Operations - Get Operation State: GET
https://api.fabric.microsoft.com/v1/operations/{operation.id }

Long Running Operations - Get Operation Result: GET
https://api.fabric.microsoft.com/v1/operations/{operation.id } /result

Domains - List Domain Workspaces GET
https://api.fabric.microsoft.com/v1/admin/domains/{domainld}/workspaces



https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/datasources
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/datasources
https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/datasources
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/export%22%3ehttps:/api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/export%22%3ehttps:/api.powerbi.com/v1.0/myorg/reports/%7breport.id%7d/Export
https://api.powerbi.com/v1.0/myorg/groups/%7bworkspace.id%7d/users
https://api.powerbi.com/v1.0/myorg/groups
https://api.powerbi.com/v1.0/myorg/admin/capacities
https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanstatus/%7bscan.id
https://api.powerbi.com/v1.0/myorg/admin/workspaces/scanresult/%7bscan.id
https://api.powerbi.com/v1.0/myorg/admin/workspaces/getinfo?lineage=true
https://api.powerbi.com/v1.0/myorg/admin/activityevents
https://api.powerbi.com/v1.0/myorg/admin/groups
https://api.powerbi.com/v1.0/myorg/admin/groups/%7bworkspace.id%7d/users
https://api.powerbi.com/v1.0/myorg/admin/groups/%7bworkspace.id%7d/users/%7buser.email
https://api.powerbi.com/v1.0/myorg/admin/users/%7buser.email%7d/artifactAccess
https://api.powerbi.com/v1.0/myorg/admin/reports/%7breportId%7d/subscriptions
https://api.fabric.microsoft.com/v1/workspaces/%7bworkspace.id%7d/items/%7bitem.id%7d/getDefinition
https://api.fabric.microsoft.com/v1/workspaces/%7bworkspace.id%7d/items/%7bitem.id%7d/getDefinition
https://api.fabric.microsoft.com/v1/operations/%7boperation.id
https://api.fabric.microsoft.com/v1/operations/%7boperation.id%7d/result
https://api.fabric.microsoft.com/v1/admin/domains/%7bdomainId%7d/workspaces

e Domains - List Domains GET https://api.fabric.microsoft.com/v1/admin/domains

Additional Security and Testing Approach

We use a combination of automated scanning and testing along with manual reviews to
ensure Measure Killer’s security before and after each release. Below are our main practices:

e Software composition analysis: When we begin development on a new version, we
check all open-source dependencies for known vulnerabilities using pip-audit and
OSS Index. Because many issues can be resolved by library updates, we track each
new release. We then review any security fixes and confirm compatibility with
Measure Killer. If it is stable and relevant, we incorporate it into our codebase.

e Static code analysis: We run automated static analysis with tools such as Bandit (a
Python security analyzer) and PyLint (for code quality and style). These tools flag
potential security weaknesses. Our developers then review each flagged item to
determine if it represents a real vulnerability or a false positive.

e Automated Testing and Code Review: We use pytest for extensive unit and
integration testing. Security-wise, our tests focus on:

o Validation and Parsing Logic: Ensuring .pbix and .rdl files are parsed securely.

o User Authentication: Verifying usage of the azure.identity library and tabular
connections.

o Error-Handling and Fail-Safe Behavior: Simulating network or parsing
failures using mocks, and testing responses to Power BI API errors.

o Regression Testing: Checking that known issues from previous Measure Killer
versions remain fixed.

Rapid response to new vulnerabilities

If a vulnerability is discovered, our team follows a quick release process to track the issue,
apply a prompt fix, and release an updated version of Measure Killer. We typically release
bug-fix or patch versions on a monthly basis.

These measures, combined with our architecture that avoids storing or processing actual data,
are designed to protect sensitive information and maintain a high level of security for all
Measure Killer users.

Known CVEs
V8

Regarding the sandbox escape vulnerabilities associated with V8: In Measure Killer, V8 is
bundled with the Qt WebEngine library, but our application does not load any external web
content or scripts. It only renders internal HTML charts (for example, in the “Plot results”
tab). Because no untrusted content is ever processed, these vulnerabilities cannot be
exploited in Measure Killer.

LLVM

This library is pulled in by PylInstaller when converting our Python code into an executable.
Measure Killer does not compile or handle external code, and PylInstaller is only used during


https://api.fabric.microsoft.com/v1/admin/domains

development to build the .exe (never at runtime). Thus, there is no way for an LLVM-Based
attack in Measure Killer.

Python (3.11.8)
CVE:s in Python:

e (CVE-2024-8088 (CWE-835)

e (CVE-2024-12254 (CWE-400)

e CVE-2017-20052 (CWE-427)

e (CVE-2024-7592 and CVE-2024-6232 (CWE-1333 or CWE-400)
e (CVE-2015-5652 (Broad CWE category)

e CVE-2025-0938 (CWE-20)

e CVE-2024-6923 (CWE-94)

e (CVE-2024-3219 (CWE-306)

These vulnerabilities arise when an application can run or process arbitrary code or malicious
inputs. Measure Killer does not allow external code execution, nor does it ingest untrusted
data. We only pull metadata from Microsoft’s Power BI Service (over HTTPS) and parse
local files that the user explicitly opens.

libxml2 and Expat

CVEs associated with libxml2 and Expat (such as CVE-2016-4616, CVE-2016-4615, CVE-
2016-4614, CVE-2021-3517, CVE-2024-25062, and more) that typically become relevant if
an application processes malformed or hostile XML from unknown sources. In Measure
Killer, we only parse .rdl files created by Power BI Report Builder, Microsoft Report Builder,
or generated via Power BI’s “Export Report In Group” API. These .rdl files have a defined
structure and come from trusted sources, making the known XML-related exploits not
applicable.

libvpx and libaom

These are part of Qt’s multimedia modules. Measure Killer does not process or render video
files, so potential vulnerabilities in these libraries (usually triggered by malformed video
content) do not pose a risk in our application.

Qt (version 6.7.2)

Qt provides the main user interface framework. While Qt can load external HTML or
JavaScript, Measure Killer does not permit loading unknown URLs or scripts. Similar to V8,
we only use Qt WebEngine for charts generated internally by the tool.

Skia (version 118)

Skia is an image rendering engine used indirectly by Qt WebEngine. We do not load or
display arbitrary images in Measure Killer; only predefined icons and resources stored
locally. With no untrusted image handling, Skia-related exploits are not a concern.

SQLite3 (version 3.42.0)



Measure Killer uses SQLite to store activity logs of the Power BI Tenant, such as report
views, and Excel activities. We do not open or process any external .sqlite files, thereby
avoiding typical exploitation paths for SQLite vulnerabilities.



